Blowup of Smooth Solutions for an Aggregation Equation
نویسندگان
چکیده
منابع مشابه
Self-Similar Blowup Solutions to an Aggregation Equation in Rn
We present numerical simulations of radially symmetric finite time blowup for the aggregation equation ut = ∇ · (u∇K ∗ u), where the kernel K(x) = |x|. The dynamics of the blowup exhibits self-similar behavior in which zero mass concentrates at the core at the blowup time. Computations are performed in Rn for n between 2 and 10 using a method based on characteristics. In all cases studied, the ...
متن کاملSelf-similar Blowup Solutions to an Aggregation Equation in R
We present numerical simulations of radially symmetric finite time blowup for the aggregation equation ut = ∇ · (u∇K ∗ u), where the kernel K(x) = |x|. The dynamics of the blowup exhibits self-similar behavior in which zero mass concentrates at the core at the blowup time. Computations are performed in R for n between 2 and 10 using a method based on characteristics. In all cases studied, the s...
متن کاملAsymptotics of blowup solutions for the aggregation equation
We consider the asymptotic behavior of radially symmetric solutions of the aggregation equation ut = ∇ · (u∇K ∗ u) in R , for homogeneous potentials K = |x| , γ > 0. For γ > 2, the aggregation happens in infinite time and exhibits a concentration of mass along a collapsing δ-ring. We develop an asymptotic theory for the approach to this singular solution. For γ < 2, the solution blows up in fin...
متن کاملRefined blowup criteria and nonsymmetric blowup of an aggregation equation
We consider an aggregation equation in Rd, d ≥ 2 with fractional dissipation: ut +∇ · (u∇K ∗ u) = −νΛγu, where ν ≥ 0, 0 < γ < 1 and K(x) = e−|x|. We prove a refined blowup criteria by which the global existence of solutions is controlled by its Lx norm, for any d d−1 ≤ q ≤ ∞. We prove for a general class of nonsymmetric initial data the finite time blowup of the corresponding solutions. The arg...
متن کاملBlowup of Smooth Solutions for Relativistic Euler Equations
We study the singularity formation of smooth solutions of the relativistic Euler equations in (3 + 1)-dimensional spacetime for both finite initial energy and infinite initial energy. For the finite initial energy case, we prove that any smooth solution, with compactly supported non-trivial initial data, blows up in finite time. For the case of infinite initial energy, we first prove the existe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/531046